Knowledge Base

Home  Search   Show all  Top

Details of the record

titleA Sparsity-driven Approach for Joint SAR Imaging and Phase Error Correction
authorsOzben Onhon, Müjdat Çetin
keywordsSynthetic aperture radar, phase errors, autofocus, regularization, sparsity.
abstractImage formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR.
typeJournal Paper
journalIEEE Trans. Image Processing, vol. 21, no. 4, pp. 2075-2088, April 2012
published year2012
serial2024
is_viewableyes
(Total records:1429)
Home  Search   Show all  Top



Powered by: DaDaBIK